Пектин

Производство пектина – на объединенной промышленной линии совместно с получением нанопектина и наноматериалов на основе модифицированного пектина; стандартизированного пектина до 150° SAG USA желирования; диетических пищевых волокон и модифицированных пищевых волокон; соков и концентратов с повышенной замутненностью, без осадка, с пониженной кислотностью; низко температурно осветленных и частично осветленных соков и концентратов из фруктов (цитрусовых, хурмы, дыни, и т.д.). Первичная структура разветвленного (привитого) сополимера пектина имеет следующий вид:  

~[4DGalU(6OOH)α1]m[4DGalU(6OOR1)α1]n[4DGalU(2OR2)α1]k[4DGalU(2OCOCH3)α1]l[4DGalU(6OOH)α1]m[2LRhaα1]p[4DGalU(6OOH)α1]m[4DGalU(6OOR1)α1]n[4DGalU(2OR2)α1]k[4DGalU(2OCOCH3)α1]l[4DGalU(6OOH)α1]m[2LRhaα1]p~; R1=H+, CH3, NH3. R2= COCH3, ~R3~4DGalβ14DGalβ14DGal(6β1DGal4β1DGal4~R3~)(3β1DGal4β1DGal4R3~)β14LRha(21αRha~)α12LRhaα1~. ~5LAraα15LAraα15LAra(3α1LAra5α1Ara5~)α14LRha(21αRha~)α12LRhaα1~, R3= DXyl, DGlu, LFru.

В первичной структуре полимера можно выделить периодически повторяющиеся моносахаридные остатки. Это остатки галактуроновой кислоты (DGalU), рамнозы (LRha). Боковые привитые структуры состоят из арабинозы (LAra), галактозы (DGal), ксилозы (DXyl), глюкозы (DGlu), фруктозы (LFru) (англ., CAS registry number). Пектин обладает сложной пространственной вторичной и надмолекулярной структурами, которые изучаются супрамолекулярной химией. Согласно своим структурным и полимерным особенностям растворение пектина происходит через стадию набухания. Причем, растворение происходит с выделением тепла. Пектины имеют следующие характеристики: молекулярная масса 45-108 KDa; низкое молекулярно-массовое распределение; степень этерификации 12-81 %; гелеобразующая способность 200—250o USA SAG; температура гелеобразования от 25°C; высокая эмульгирующая способность (20 минут при 4000-8000 rpm). Пектины бесцветны в гелях, в эмульсиях и в растворенном виде. Не содержат остатки флавоноидов и веществ, окисляющихся в результате хранения. Параметры цвета: L* в интервале 90-92; a* в интервале −3,7… −1,0; b* в интервале 2-15.

Dr. Isaac Eliaz является одним из первых исследователей модифицированного пектина, полученного из цитрусовых, и, имеющий аббревиатуру MCP. В его патентах, основанных на работах ученого Dr. K.J. Pienta, доказывается возможность использования модифицированного пектина при лечении рака простаты, легких. МСР препятствует росту кровеносных сосудов в опухоли, что помогает в борьбе с метастазами. Сообщается о способствовании им запрограммированной смерти раковой клетки даже в случаях андрогеннезависимых видов рака. Совет экспертов NDA (англ., Panel on Dietetic Products, Nutrition and Allergies) Европейское агентство по безопасности продуктов питания (англ., European Food Safety Authority) рассмотрел фармокологические свойства пектиновых производных. Для получения модифицированного пектина могут применяться различные методы: как химический, так и ферментативный. Согласно условиям не ферментативной технологии, получается модифицированный пектин с линеарным строением, с молекулярной массой и степенью этерификации в интервалах 10-20 KDa, 5-50 %, соответственно. Ферментативный способ получения модифицированного пектина основывается на деполимеризации и деэтерифиции предварительно промышленно полученного пектина. Для исследования использовались образцы модифицированного пектина, хитозана, немодифицированого пектина, полигалактуроновой кислоты. Исследования подтверждают, что модифицированный пектин ингибирует HT29 и SW480 аденокарциномы толстой кишки (англ. Cell Line human, caucasian colon adenocarcinoma grade II), JIMT- 1 рака молочной железы и B16-F10 меланомы (англ. Cell Line, murine tumor melanoma). Модифицированный пектин способен инициировать апоптоз двумя сигнальными маршрутами: внешним и внутренним. Анализ структуры модифицированных пектинов, полученных двумя рассматриваемыми способами, с помощью ВЭЖХ (англ. HPLC, High performance liquid chromatography) показывает их идентичность. Представленный рисунок хроматограммы демонстрирует только один пик со временем удерживания 5,62-5,66 мин, характерным для пектиновых соединений. Наличие только одного пика, а так же его форма подтверждают присутствие полимерных цепей одной молекулярной массы.
Для исследователей в области химии и медицины разработка биоматериалов для регенеративной медицины по-прежнему считается инновационной областью. Исследования показывают, что полисахариды обладают сходными свойствами с внеклеточным матриксом. Им присуще биологическая совместимость. Снижение молекулярной массы полисахаридов, например целлюлозы, способствует появлению свойств, позволяющих получать био-нанокомпозиты, нановолокна, наноматериалы. Свойствами, необходимыми для создания био-нанокомпозитов, биоматериалов тканевой инженерии, обладает и хитозан. Благодаря своей способности образовывать тонкие пленки и волокна, уникальным сорбционным и комплексообразующим свойствам, хитозан и его производные перспективны для создания имплантатов, носителей лекарственных веществ. Продолжаются исследования свойств, использования и получения нанопектина, с учетом данных полученных для хитозана. Условия, используемые при производстве модифицированного пектина, позволяют получать в промышленном масштабе нанопектин с молекулярными размерами 60-200 нанометров и со степенью полимеризации 30-70 мономеров.
Публикации
×